Modeling of Disease Spreading on Trees

Daniel Guo
Mentor: Professor Partha Dey
PRIMES Conference

May 16, 2015

(1) Introduction and Definitions

(2) The Problem

(3) Results and Continuation

Motivation

Motivation:

Motivation

Motivation:

- Diseases

Motivation

Motivation:

- Diseases
- Spread of "information" (rumors, etc.)

Motivation

Motivation:

- Diseases
- Spread of "information" (rumors, etc.)
\rightarrow the motivation for the question

Graphs and Trees

Definition

Graph: A simple graph (V, E) consists of a set representing vertices, V , and a set of unordered pairs of elements of V representing edges, E.

Graphs and Trees

Definition

Graph: A simple graph (V, E) consists of a set representing vertices, V , and a set of unordered pairs of elements of V representing edges, E.

Graphs and Trees

Definition
Tree: A tree is a graph that is connected and has no loops.

Graphs and Trees

Definition

Tree: A tree is a graph that is connected and has no loops.
This implies that

Graphs and Trees

Definition
Tree: A tree is a graph that is connected and has no loops.
This implies that
Lemma
Tree: A tree is a graph with $|V|=|E|+1$ and no loops.

Graphs and Trees

Definition
Tree: A tree is a graph that is connected and has no loops.
This implies that
Lemma
Tree: A tree is a graph with $|V|=|E|+1$ and no loops.

More Definitions

Definition

Binary Tree: A binary tree is a tree such that for each vertex V, there are at most 2 children.

More Definitions

Definition

Binary Tree: A binary tree is a tree such that for each vertex V, there are at most 2 children.

Definition

Perfect Binary Tree: A perfect binary tree is a binary tree with $2^{N}-1$ vertices such that the last level is completely full.

More Definitions

Definition

Binary Tree: A binary tree is a tree such that for each vertex V, there are at most 2 children.

Definition

Perfect Binary Tree: A perfect binary tree is a binary tree with $2^{N}-1$ vertices such that the last level is completely full.

Note that such a tree is unique, not including labeling or directed edges.

Perfect Binary Tree

Perfect Binary Tree

(1) Introduction and Definitions

(2) The Problem

(3) Results and Continuation

Depiction of the Problem

- Given any tree, nodes $=$ people

Depiction of the Problem

- Given any tree, nodes $=$ people
- Nodes are represented with a Boolean variable for infection

Depiction of the Problem

- Given any tree, nodes $=$ people
- Nodes are represented with a Boolean variable for infection
- Infection can jump from any initial node to any other node in the sub-tree that it is the root of

Depiction of the Problem

- Given any tree, nodes = people
- Nodes are represented with a Boolean variable for infection
- Infection can jump from any initial node to any other node in the sub-tree that it is the root of
- Each node has a chance to be infected at any given point

Depiction of the Problem

- Given any tree, nodes = people
- Nodes are represented with a Boolean variable for infection
- Infection can jump from any initial node to any other node in the sub-tree that it is the root of
- Each node has a chance to be infected at any given point
- Infection rate decreases with distance from node

An Example

An Example

An Example

Questions

1 How long will it take to reach layer n or below?

Questions

1 How long will it take to reach layer n or below?
2 How many infected nodes are there when this occurs?

Solving the Problem(s)

- Program was devised to simulate the binary tree and infection process

Solving the Problem(s)

- Program was devised to simulate the binary tree and infection process - Used MATLAB

Solving the Problem(s)

- Program was devised to simulate the binary tree and infection process - Used MATLAB
- Modeled the infection time between two points with exponential distributions

Solving the Problem(s)

- Program was devised to simulate the binary tree and infection process - Used MATLAB
- Modeled the infection time between two points with exponential distributions
- Exponential distributions had rates of $2^{-k}\left(k^{1-\alpha}-(k+1)^{1-\alpha}\right)$

Solving the Problem(s)

- Program was devised to simulate the binary tree and infection process - Used MATLAB
- Modeled the infection time between two points with exponential distributions
- Exponential distributions had rates of $2^{-k}\left(k^{1-\alpha}-(k+1)^{1-\alpha}\right)$
- α is a predetermined constant such that $\alpha>1$

Solving the Problem(s)

- Program was devised to simulate the binary tree and infection process - Used MATLAB
- Modeled the infection time between two points with exponential distributions
- Exponential distributions had rates of $2^{-k}\left(k^{1-\alpha}-(k+1)^{1-\alpha}\right)$
- α is a predetermined constant such that $\alpha>1$
- k is the difference in layers between the infecting/infected nodes

Solving the Problem(s)

There are 3 important properties of an exponential distribution that we can use

Solving the Problem(s)

There are 3 important properties of an exponential distribution that we can use

Property
Memoryless: If $X=\exp (r)$, then $P(X>x+y \mid X>y)=P(X>x)$.

Solving the Problem(s)

There are 3 important properties of an exponential distribution that we can use

Property
Memoryless: If $X=\exp (r)$, then $P(X>x+y \mid X>y)=P(X>x)$.

Property
Minimum: If $X_{1}, X_{2}, \ldots, X_{n}$, are all exponential with rates $r_{1}, r_{2}, \ldots, r_{n}$, then $\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)=\exp \left(r_{1}+r_{2}+\cdots+r_{n}\right)$.

Solving the Problem(s)

There are 3 important properties of an exponential distribution that we can use

Property
Memoryless: If $X=\exp (r)$, then $P(X>x+y \mid X>y)=P(X>x)$.

Property

Minimum: If $X_{1}, X_{2}, \ldots, X_{n}$, are all exponential with rates $r_{1}, r_{2}, \ldots, r_{n}$, then $\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)=\exp \left(r_{1}+r_{2}+\cdots+r_{n}\right)$.

Property

Probability: If $X_{1}, X_{2}, \ldots, X_{n}$, are all exponential with rates $r_{1}, r_{2}, \ldots, r_{n}$, then the probability than X_{i} is the minimum of $X_{1}, X_{2}, \ldots, X_{n}$ is $\frac{r_{i}}{r_{1}+r_{2}+\cdots+r_{n}}$.

Solving the Problem(s)

Properties can shorten simulation time
1 Pick a point that will infect, probability property

Solving the Problem(s)

Properties can shorten simulation time
1 Pick a point that will infect, probability property
2 Pick point to be infected

Solving the Problem(s)

Properties can shorten simulation time
1 Pick a point that will infect, probability property
2 Pick point to be infected
3 Time generated from \exp (sum of all infected node rates), minimum property

(1) Introduction and Definitions

(2) The Problem

(3) Results and Continuation

4 References

Results

The results seem to model a curve that is slightly skewed right

Results

Predictions

Conjecture

If $1<\alpha<2$, prediction is polynomial in n with degree $\alpha-1$

Predictions

Conjecture
If $1<\alpha<2$, prediction is polynomial in n with degree $\alpha-1$

Conjecture
If $\alpha \geq 2$, prediction is linear in n

Future Goals

Expand to different types of trees

Acknowledgments

Professor Partha Dey for mentoring me on this project PRIMES and Tanya Khovanova for offering this opportunity

